Application of the K-Means Algorithm to determine the accuracy of goods inventory based on sales data classification at PT Batu Indah Raya

(1) Universitas Islam Balitar
(2) Universitas Islam Balitar
(3) Universitas Islam Balitar

Abstract
The research aims to apply the K-means algorithm to classify sales data and to test the final results of Clustering Accuracy of each type of stone using DBI (Davies-Bouldin Index) testing. In the last 9 months PT Batu Indah Raya has experienced uncertain sales ups and downs, from these problems it is difficult to know the level of inventory of goods each month. The impact is that the company experiences a buildup or shortage of stock of goods every month and incurs costs related to excessive storage of goods or additional costs that arise due to lack of stock, to be able to overcome the problems that occur, requires a method or system to find out inventory by classifying sales data of each type and testing the level of accuracy with a test method or system. One method that can be used to solve these problems is using the K-means Clustering algorithm. The K-means method is expected to help companies identify inventory more easily. So that business people can show effectiveness in product / goods procurement. Data to determine the level of accuracy of inventory is taken based on sales every month at PT Batu Indah Raya. By using 2 clusters, namely cluster 1, it means that cluster 1 is in high demand and cluster 2 is less in demand in applying the k-means algorithm method with the results of the type of yellow brongkol stone in cluster 1 getting 59 members and cluster 2 getting 31 members with the DBI accuracy test result of 2.292 which is in the very good range. The type of white cobblestone in cluster 1 gets 36 members and cluster 2 gets 54 members with a DBI accuracy test result of 3.711 which is in the good range. The type of zeolite stone in cluster 1 gets 42 members and cluster 2 gets 36 members with a DBI accuracy test result of 3.597 which is in the good range.
Keywords
References
Bagus Arief Setiawan, & Sulastri. (2021). Perbandingan Clustering Optimalisasi Stok Barang Menggunakan Algoritma K-means Dan Algortima K-Medoids ( Studi Kasus : Klinik Ben Waras ).
Nisa, & Yustanti. (2021). Studi Perbandingan Algoritma Clustering Dalam Pengelompokan Persediaan Produk (Studi Kasus : Subdirektorat Perencanaan Sarana Prasarana Dan Logistik Ptn X). Jeisbi, 02, 2021.
Setiawan, & Rino. (2020). Implementasi Data Mining Clustering Dengan Metode Kmeans Untuk Mengelola Persediaan Stok. Akselerator, 3(2), 146–164. Https://Katalog.Data.Go.Id/Dataset/Banyaknya-Persediaan-Dan-Pemakaian-Kabupaten
Syukron Nawawi, M., Sembiring, F., & Erfina, A. (2021). " “Program Studi Teknik Informatika-Universitas Pgri Madiun” | 789 Implementasi Algoritma K-means Clustering Menggunakan Orange Untuk Penentuan Produk Busana Muslim Terlaris.
Tendean, T., & Purba, W. (2020). Analisis Cluster Provinsi Indonesia Berdasarkan Produksi Bahan Pangan Menggunakan Algoritma K-means. Jurnal Sains Dan Teknologi), 1(2), 5–11.
Utami, K. S., Darma, G. W., & Aryani, N. W. S. (2019). Stock Management Using K-means Method And Time Series Method As Stock Order. International Journal Of Engineering And Emerging Technology.
Wahyudi, M., Masitha, Saragih Risna, & Solikhun. (2020). Data Mining : Penerapan Algoritma K-means Clustering Dan K-Medoids Clustering. : Kitamenulis.Id
Wahyudi, T., & Silfia, T. (2022). Implementation Of Data Mining Using K-means Clustering Method To Determine Sales Strategy In S&R Baby Store. Dalam Journal Of Applied Engineering And Technological Science (Vol. 4, Nomor 1).
Wulan Sari, R., & Hartama, D. (2018). Seminar Nasional Sains & Teknologi Informasi (Sensasi) Data Mining: Algoritma K-means Pada Pengelompokkan Wisata Asing Ke Indonesia Menurut Provinsi. Http://Seminar-Id.Com/Semnas-Sensasi2018.Htmlpage|322
Zulfikar, P., & Nur Rahman, A. (2022). Penerapan Data Mining Untuk Clustering Dengan Metode K-means Dalam Menentukan Stok Barang Di Era Covid 19 (Studi Kasus Supermarket Kem Chicks). 04(02).
Al Rasyid, H., Firmansyah, B., Soebari, K., Satria, D., & Kartika, Y. (2022). Prosiding Seminar Nasional Teknologi Dan Sistem Informasi (Sitasi) 2022 Implementasi Algoritma K-means Clustering Untuk Pengelompokan Penjualan Produk Pada Online Shop Toko Gizi Implementation Of K-means Clustering Algorithm For Grouping Product Sales In Online Shop Toko Gizi. Http://Sitasi.Upnjatim.Ac.Id/|242
Alia Akhmad, & Khabib. (2020). Pemanfaatan Media Sosial Bagi Pengembangan Pemasaran Umkm (Studi Deskriptif Kualitatif Pada Distro Di Kota Surakarta) (Vol. 9).
Anjumi, K. N., & Bella, C. (2022). Analisis Data Pola Penjualan Menggunakan Algoritma Apriori. Dalam Portaldata.Org (Vol. 2, Nomor 2).
Safira, I., Salkiawati, R., & Priatna, W. (2022). Penerapan Algoritma K-means Untuk Mengetahui Pola Persediaan Barang Pada Toko Raja Bekasi. Dalam Journal Of Information And Information Security (Jiforty) (Vol. 3, Nomor 1). Http://Ejurnal.Ubharajaya.Ac.Id/Index.Php/Jiforty
Sasi, A., 1&2, K., & Aithal, P. S. (2022). Deepq Based Heterogeneous Clustering Hybrid Cloud Prediction Using K-means Algorithm. Https://Ssrn.Com/Abstract=4541232
Article Metrics
Abstract View

DOI: 10.57235/aurelia.v4i1.3710
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Pramudia Eka Ariansyah, Indyah Hartami Santi, Sabitul Kirom

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.