Mapping of K-Means Clustering Crime Prone Areas in Brebes Regency
(1) Universitas Muhadi Setiabudi
(2) Universitas Muhadi Setiabudi
(3) Universitas Muhadi Setiabudi
Corresponding Author
Abstract
This research aims to map crime-prone areas in the Brebes Police area using the K-Means Clustering method. The crime data used in this research was collected from weekly police reports in the Brebes Police area during 2023. The K-Means Clustering method was chosen because of its ability to group data based on similar characteristics, making it easier to identify crime patterns in various areas. The data was analyzed using rapidminer software to perform clustering, and the results were visualized in the form of a web-based interactive map developed using Visual Studio. The clustering results show that the Brebes area can be categorized into three levels of vulnerability: moderately vulnerable, vulnerable and very vulnerable. This mapping provides a clear picture of the distribution of crime rates in various regions, helping the police in designing more effective and efficient handling strategies. The system developed also provides features for accessing detailed data regarding the type and frequency of criminal acts in each area, which can be used by the Brebes Police and the general public. The implementation of this system is expected to increase the efficiency of crime data management, facilitate access to information, and support more targeted preventive and enforcement efforts. In addition, with information that is more structured and easily accessible, people can be more aware of potential threats in their surrounding environment. This research shows that the use of technology in managing crime data can make a significant contribution to increasing security and order in society. The web application system for mapping crime-prone areas using K-Means Clustering in the Brebes Police area was successfully developed and implemented, providing accurate and useful information for efforts to prevent and handle crime.
Keywords
References
Nurjoko, D. Dwirohayati, dan N. H. Sudibyo, “Sistem Informasi Pemetaan Wilayah Rawan Kriminalitas Polresta Bandar Lampung Menggunakan K-Means Clustering,” Teknika, vol. 14, no. 2, hal. 127–135, 2020.
J. Inayah dkk., “Clustering Daerah Rawan Kriminalitas,” hal. 95–106, 2022.
I. Technology dan C. Science, “No Title,” vol. 4, hal. 67–79, 2021.
Ira Audita, Irfan Sudahri Damanik, dan EKA IRAWAN, “Pemetaan Hasil Produksi Buah-Buahan Dengan Teknik Data Mining K-Medoids,” J. Tek. Mesin, Ind. Elektro Dan Inform., vol. 1, no. 3, hal. 39–53, 2022, doi: 10.55606/jtmei.v1i3.535.
D. Ekstraksi, P. Kompetensi, dan L. Mardiani, “Desain Model Data Mining Pada Model SECI Untuk Pemetaan,” vol. 8, no. 3, hal. 1607, 2021, [Daring]. Tersedia pada: http://jurnal.mdp.ac.id
J. Hutagalung, “Pemetaan Siswa Kelas Unggulan Menggunakan Algoritma K-Means Clustering,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 1, hal. 606–620, 2022, doi: 10.35957/jatisi.v9i1.1516.
L. Suriani, “Pengelompokan Data Kriminal Pada Poldasu Menentukan Pola Daerah Rawan Tindak Kriminal Menggunakan Data Mining Algoritma K-Means Clustering,” vol. 1, hal. 151–157, 2020, doi: 10.30865/json.v1i2.1955.
K. Surbakti, “Kajian Mengenai Pentingnya Basis Data Bagi Sekolah Saat Ini,” J. Curere, vol. 02, no. 02, hal. 2597–9515, 2018, [Daring]. Tersedia pada: http://portaluniversitasquality.ac.id:5388/ojssystem /index.php/CURERE/article/view/156/129
R. S. Sasmita, “Research & Learning in Primary Education Pemanfaatan Internet Sebagai Sumber Belajar,” J. Pendidik. Dan Konseling, vol. 1, hal. 1–5, 2020.
T. Lesmana Marselino, “Kajian Ekspresi Diri pada Ruang Publik Dunia Maya dalam Perspektif Ontologis Layanan Internet World Wide Web,” KALBISCIENTIA J. Sains dan Teknol., vol. 9, no. 1, hal. 14–23, 2022, doi: 10.53008/kalbiscientia.v9i1.212.
R. Hermiati, A. Asnawati, dan I. Kanedi, “Pembuatan E-Commerce Pada Raja Komputer Menggunakan Bahasa Pemrograman Php Dan Database Mysql,” J. Media Infotama, vol. 17, no. 1, hal. 54–66, 2021, doi: 10.37676/jmi.v17i1.1317.
A. Mubarak, “Rancang Bangun Aplikasi Web Sekolah Menggunakan Uml (Unified Modeling Language) Dan Bahasa Pemrograman Php (Php Hypertext Preprocessor) Berorientasi Objek,” JIKO (Jurnal Inform. dan Komputer), vol. 2, no. 1, hal. 19–25, 2019, doi: 10.33387/jiko.v2i1.1052.
A. Kusumawati, N. Purwandari, dan E. Lumba, “Model Pembelajaran Mind Mapping Menggunakan Microsoft Visio 2007 bagi Guru-Guru SDIT Al-Kautsar Cikarang,” J. Karya untuk Masy., vol. 2, no. 1, hal. 26–37, 2021, doi: 10.36914/jkum.v2i1.478.
Article Metrics
Abstract View : 56 timesPDF Download : 35 times
DOI: 10.57235/jetish.v3i2.3347
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Otong Saeful Bachri, Nur Ariesanto Ramdhan, Teuku Rizal Adi Pangestu
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.