Environmental Impact and Life Cycle Costs of Large-Scale Hydroelectric Power Plants

A Ida Nurfaida Nur(1), Nugroho Adi Sasongko(2), M Sidik Boedoyo(3),


(1) Universitas Pertahanan Republik Indonesia
(2) Universitas Pertahanan Republik Indonesia
(3) Universitas Pertahanan Republik Indonesia
Corresponding Author

Abstract


Utilization of water resources as a renewable primary energy source can be utilized synergistically for many benefits. Hydroelectric power is a renewable energy source with large reserves in Indonesia. In principle, all development activities have environmental impacts in the form of positive (beneficial) impacts and negative (harmful) impacts, so an analysis of environmental impacts and life cycle costs is needed. This paper aims to analyze the environmental impacts and life cycle costs of hydroelectric power plants using the literature review method to reach conclusions regarding the possible environmental impacts and life cycle costs required for a hydroelectric power plant. Interactions between hydroelectric project locations and environmental areas suggest that hydroelectric project construction may adversely impact certain important habitats, and impacts may worsen in the future. By planning life cycle costs before a hydroelectric power plant is installed, the costs that will be incurred will be focused.


Keywords


Hydropower, Water Resources, Environmental Impact, Life Cycle Costs, Life Cycle Costs, Environmental Assessment

References


Badan Standardisasi Nasional. (2019). Klasifikasi Pembangkit Listrik Tenaga Air. Sni 8396:2019, 11.

Doni Prasetyo, & Alimuddin. (2018). Kajian Dampak Lingkungan Terhadap Proyek Konstruksi Pembangunan Pembangkit Listrik Tenaga Minihidro (Pltm) Pongkor. Badan Intelijen Negara, 1–11.

Fakhriansyah, M., Fathimahhayti, L. D., & Gunawan, S. (2022). Strategi Pengembangan Pembangkit Listrik Tenaga Air Mini/Mikro Hidro di Indonesia. G-Tech : Jurnal Teknologi Terapan, 6(2), 295–305.

Ghimire, H. R., & Phuyal, S. (2022). Spatiotemporal analysis of hydropower projects with terrestrial environmentally sensitive areas of Nepal. Environmental Challenges, 9(August), 100598. https://doi.org/10.1016/j.envc.2022.100598

Hanafi, J., & Riman, A. (2015). Life cycle assessment of a mini hydro power plant in Indonesia: A case study in Karai River. Procedia CIRP, 29, 444–449. https://doi.org/10.1016/j.procir.2015.02.160

Hasannuddin, T., Maimun, M., Radhiah, R., & ... (2019). Perancangan Pembangkit Listrik Tenaga Air Krueng Lhok Gob Desa Kumba Kabupaten Pidie Jaya. Prosiding Seminar …, 3(1), 182–187. http://e-jurnal.pnl.ac.id/semnaspnl/article/view/1679%0Ahttp://e-jurnal.pnl.ac.id/index.php/semnaspnl/article/download/1679/1445

Hidayat, W. (2019). Prinsip kerja dan komponen - komponen pembangkit listrik tenaga air (PLTA). Prinsip Kerja Dan Komponen - Komponen Pembangkit Listrik Tenaga Air (PLTA), March, https://osf.io/preprints/inarxiv/drv58/. https://doi.org/10.31227/osf.io/drv58

Inam Ullah, E., Ahmad, S., Khokhar, M. F., Azmat, M., Khayyam, U., & Qaiser, F. ur R. (2023). Hydrological and ecological impacts of run off river scheme; a case study of Ghazi Barotha hydropower project on Indus River, Pakistan. Heliyon, 9(1), e12659. https://doi.org/10.1016/j.heliyon.2022.e12659

Lahcen, B., Brusselaers, J., Vrancken, K., Dams, Y., Da Silva Paes, C., Eyckmans, J., & Rousseau, S. (2020). Green Recovery Policies for the COVID-19 Crisis: Modelling the Impact on the Economy and Greenhouse Gas Emissions. Environmental and Resource Economics, 76(4), 731–750. https://doi.org/10.1007/s10640-020-00454-9

Liun, E. (2016). Perhitungan Biaya Eksternal Pembangkit Listrik Dengan Model Simpacts. Digilib.Batan.Go.Id, March. https://digilib.batan.go.id/ppin/katalog/file/0853-9812-2012-307.pdf

Mamberamo, I., Ii, M., & Jaya, I. (2015). Prospek Pemanfaatan Pembangkit Listrik Tenaga Air ( PLTA ) Skala Besar Laporan Teknis Pebruari 1999 Direktorat Teknologi Konversi dan Konservasi Energi Deputi Bidang Teknologi Informasi , Energi , Material dan Lingkungan. May. https://doi.org/10.13140/RG.2.1.1705.6161

Manurung, J. P., & Boedoyo, M. S. (2022). Life Cycle Assessment pada Solar Photovoltaics: Review. Jurnal Penelitian Sains Teknologi, 13(1), 20–27. https://doi.org/10.23917/saintek.v13i1.560

Nasriyah, N., Malik, M., & Aji, S. (2022). Dampak Investasi Pembangunan Plta Batang Toru Terhadap Potensi Pemulihan Perekonomian Indonesia: Analisis Inter Regional Input-Output. Parameter, 7(14), 64. https://doi.org/10.17632/jwkp8r58cd.1

Novitasari, D., Sarjiya, Hadi, S. P., Budiarto, R., & Deendarlianto. (2023). The climate and land-use changes impact on water availability for hydropower plants in Indonesia. Energy Strategy Reviews, 46(December 2022), 101043. https://doi.org/10.1016/j.esr.2022.101043

Pérez-Díaz, J. I., & Wilhelmi, J. R. (2010). Assessment of the economic impact of environmental constraints on short-term hydropower plant operation. Energy Policy, 38(12), 7960–7970. https://doi.org/10.1016/j.enpol.2010.09.020

Quaranta, E., Dolores, M., Comoglio, C., Fuentes-pérez, J. F., Pérez-díaz, J. I., Sanz-ronda, F. J., Schletterer, M., Szabo-meszaros, M., & Tuhtan, J. A. (2023). Digitalization and real-time control to mitigate environmental impacts along rivers : Focus on arti fi cial barriers , hydropower systems and European priorities. Science of the Total Environment, 875(March), 162489. https://doi.org/10.1016/j.scitotenv.2023.162489

Quaranta, E., & Muntean, S. (2023). Wasted and excess energy in the hydropower sector: A European assessment of tailrace hydrokinetic potential, degassing-methane capture and waste-heat recovery. Applied Energy, 329(June 2022), 120213. https://doi.org/10.1016/j.apenergy.2022.120213

Ratnata, I. W., Surya S, W., & Somantri, M. (2013). Analisis Potensi Pembangkit Energi Listrik Tenaga Air Di Saluran Air Sekitar Universitas Pendidikan Indonesia. FPTK Expo - UPI, November 2002, 254–261.

Sayed, S. S. M., & Sawant, P. H. (2015). Life-cycle cost and financial analysis of energy components in mass housing projects – A case project in sub-urban India. International Journal of Sustainable Built Environment, 4(2), 202–221. https://doi.org/10.1016/j.ijsbe.2015.07.001

Sindang, K. C., Mukhlis, B., Arifin, Y., Maryantho, M., & Agustinus, K. (2022). Pengaruh Pembebanan Terhadap Sistem Eksitasi Generator Sinkron Sf 33 . 065 Pada Pembangkit Listrik Tenaga Air ( PLTA ) Poso 1 Energy. 393–397.

Song, D., Yang, J., Chen, B., Hayat, T., & Alsaedi, A. (2016). Life-cycle environmental impact analysis of a typical cement production chain. Applied Energy, 164, 916–923. https://doi.org/10.1016/j.apenergy.2015.09.003

Sudibyo, H. (2023). PENGEMBANGAN PEMBANGKIT LISTRIK TENAGA AIR DALAM. 5, 267–273.

Tanasa, C., Dan, D., Becchio, C., Corgnati, S. P., & Stoian, V. (2020). Cost-optimal and indoor environmental quality assessment for residential buildings towards EU long-term climate targets. Energy for Sustainable Development, 59, 49–61. https://doi.org/10.1016/j.esd.2020.09.002

Yanto, N. P., & Hadi, M. P. (2016). Kajian Potensi Sumberdaya Air Untuk Pembangkit Listrik Tenaga Mikrohidro Di Kali Suci, Dusun Jetis, Semanu, Gunungkidul. 1–9.


Full Text: PDF

Article Metrics

Abstract View : 168 times
PDF Download : 139 times

DOI: 10.57235/jetish.v3i1.1242

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 A Ida Nurfaida Nur, Nugroho Adi Sasongko, M Sidik Boedoyo

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.