Metode Polya Dalam Penjumlahan Untuk Meningkatkan Pemahaman dan Keterampilan Matematika Siswa
(1) Universitas Islam Negeri Sumatera Utara
(2) Universitas Islam Negeri Sumatera Utara
Corresponding Author
Abstract
Keywords
References
Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. The Handbook of Research on Mathematics Teaching and Learning, 65-97.
Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn?. Educational psychology review, 16(3), 235-266.
Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational technology research and development, 48(4), 63-85.
Leikin, R., & Berman, A. (2011). Developing flexibility in mathematical reasoning using unsolved problems. Mathematical Thinking and Learning, 13(3), 171-196.
Mason, J., Burton, L., & Stacey, K. (2010). Thinking mathematically. Pearson.
Polya, G. (1945). How to solve it: A new aspect of mathematical method (2nd ed.). Princeton, NJ: Princeton University Press.
Schoenfeld, A. H. (1992). Learning to think mathematically: problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 334-370). New York: Macmillan.
Silver, E. A. (1994). On Mathematical Problem Posing. For the learning of mathematics, 14(1), 19-28.
Sweller, J., van Merriënboer, J. J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational psychology review, 10(3), 251-296.
Verschaffel, L., Greer, B., & De Corte, E. (2007). Whole number concepts and operations. Handbook of research on mathematics teaching and learning, 557-628.
Article Metrics
Abstract View : 175 timesUntitled Download : 94 times
DOI: 10.57235/jleb.v2i1.1949
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Shafa Azzahra Nurzal, Suci Amalia
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.