Application of Geospatial Technology for Landslide Risk Mapping Using Weighted Overlay Method in Bogor

(1) * Fakhri Reza Mail (Indonesia Defense University, Indonesia)
(2) Adi Subiyanto Mail (Indonesia Defense University, Indonesia)
(3) Sutanto Sutanto Mail (Indonesia Defense University, Indonesia)
*corresponding author

Abstract


Bogor Regency has a high risk of landslides due to geological factors, steep slopes, high rainfall, and changes in land use. This study analyzes the distribution of landslide risk using a Geographic Information System (GIS) with four main parameters (geology, rainfall, slope, and land use) that are weighted and overlaid using ArcGIS. The results show that the southern part of Bogor, especially Cigudeg, Nanggung, Leuwiliang, and Pamijahan, is at high risk due to a combination of geological and climatic conditions. The resulting landslide risk map provides important input for local governments in spatial planning, land management, and community preparedness. This study highlights the important role of geospatial technology in supporting evidence-based mitigation strategies and sustainable development in disaster-prone areas.


Keywords


Landslide, Geospatial Technology, Weighted Overlay Analysis

   

DOI

https://doi.org/10.57235/qistina.v4i2.7381
      

Article metrics

10.57235/qistina.v4i2.7381 Abstract views : 0 | PDF views : 0

   

Cite

   

Full Text

Download

References


Azizi, H. A., Asupyani, H., Akbar, F., & Sulaksana, N. (2020). Landslide zoning with GIS analysis method: Case study Cipelah and its surroundings area, Rancabali Subdistrict, Bandung Regency, West Java. IOP Conference Series: Earth and Environmental Science, 412, 012023. https://doi.org/10.1088/1755-1315/412/1/012023

Budhu, M. (2011). Soil Mechanics and Foundations (3rd ed.). Hoboken, NJ: John Wiley & Sons, Inc.

Chen, W., Xie, X., Peng, J., Wang, J., Duan, Z., & Hong, H. (2017). GIS-based landslide susceptibility modeling: A comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models. Geomatics, Natural Hazards and Risk, 11(1), 918–943. https://doi.org/10.1080/19475705.2017.1289250

Dam, N. D., Amiri, M., Al-Ansari, N., Prakash, I., Le, H. V., Nguyen, H. B. T., & Pham, B. T. (2022). Evaluation of Shannon Entropy and Weights of Evidence models in landslide susceptibility mapping for the Pithoragarh district of Uttarakhand state, India. Advances in Civil Engineering, 2022, 1–16. https://doi.org/10.1155/2022/6645007

Gariano, S. L., & Guzzetti, F. (2016). Landslides in a changing climate. Earth-Science Reviews, 162, 227–252. https://doi.org/10.1016/j.earscirev.2016.08.011

Glade, T., & Crozier, M. J. (2012). The nature of landslide hazard impact. In T. Glade, M. Anderson, & M. J. Crozier (Eds.), Landslide hazard and risk (pp. 43–74). John Wiley & Sons. https://doi.org/10.1002/9780470012659.ch2

Hadmoko, D. S., Lavigne, F., Sartohadi, J., Hadi, P., & Wassmer, P. (2010). Landslide hazard and risk assessment and their application in risk management and land-use planning in eastern flank of Menoreh Mountains, Yogyakarta Province, Indonesia. Natural Hazards, 54, 623–642. https://doi.org/10.1007/s11069-009-9490-0

Hidayat, S., et al. (2019). Analysis of landslide susceptibility zone using frequency ratio and logistic regression method in Hambalang, Citeureup District, Bogor Regency, West Java Province. IOP Conference Series: Earth and Environmental Science, 280, 012005. https://doi.org/10.1088/1755-1315/280/1/012005

Johnston, E. C., Davenport, F. V., Wang, L., Caers, J. K., Muthukrishnan, S., Burke, M., & Diffenbaugh, N. S. (2021). Quantifying the effect of precipitation on landslide hazard in urbanized and non-urbanized areas. Geophysical Research Letters, 48(15), e2021GL094038. https://doi.org/10.1029/2021GL094038

Lombardo, L., Opitz, T., Ardizzone, F., Guzzetti, F., & Huser, R. (2020). Space-time landslide predictive modelling. Earth-Science Reviews, 209, 103318. https://doi.org/10.1016/j.earscirev.2020.103318

Mahmud, A. R., Awad, A., & Billa, R. (2013). Landslide susceptibility mapping using averaged weightage score and GIS: A case study at Kuala Lumpur. Pertanika Journal of Science and Technology, 21(2), 473–486.

Mengstie, L., Nebere, A., Jothimani, M., & Taye, B. (2024). Landslide susceptibility assessment in Addi Arkay, Ethiopia using GIS, remote sensing, and AHP. Quaternary Science Advances, 15, 100217. https://doi.org/10.1016/j.qsa.2024.100217

Muhammadi, R., Rayes, M. L., & Nita, I. (2019). Penerapan sistem informasi geografi dalam pendugaan sebaran daerah rawan longsor di Kecamatan Ngargoyoso, Kabupaten Karanganyar. Jurnal Tanah dan Sumberdaya Lahan, 6(1), 1083–1092. https://doi.org/10.21776/ub.jtsl.2019.006.1.7

Park, H. J., Jang, J. Y., & Lee, J. H. (2019). Assessment of rainfall-induced landslide susceptibility at the regional scale using a physically based model and fuzzy-based Monte Carlo simulation. Landslides, 16(4), 695–713. https://doi.org/10.1007/s10346-018-01125-z

Rana, H., Mushtaq, T., & Anburaj, R. (2025). Impact of geofactors on landslide susceptibility using weighted overlay method: An integrated GIS and field-based analysis on NH-07, Chamoli, Uttarakhand. Geosystems and Geoenvironment, 4, 100420. https://doi.org/10.1016/j.geogeo.2025.100420

Setiawan, H., & Wibowo, D. A. (2023). Analysis of landslide susceptibility in the Cugenang new fault area in the north of Cianjur Regency. Jurnal Geografi, Edukasi dan Lingkungan (JGEL), 7(2), 94–108. https://doi.org/10.22236/jgel.v7i2.10767

Sittadewi, E. H., Tejakusuma, I. G., Mulyono, A., Handayani, T., Tohari, A., & Zakaria, Z. (2024). Post-landslide restoration through multistrata agroforestry-based land management in the West Bogor area of Indonesia. Trees, Forests and People, 16, 100593. https://doi.org/10.1016/j.tfp.2024.100593

Taufik, H. P., & Suharyadi. (2008). Landslide risk spatial modelling using geographical information system (Tutorial Landslide). Geographic Information System Laboratory, Faculty of Geography, Gadjah Mada University.

Tesfa, C., & Sewnet, D. (2024). GIS-based MCDM approach for landslide hazard zonation mapping in east Gojjam zone, central Ethiopia. Quaternary Science Advances, 15, 100210. https://doi.org/10.1016/j.qsa.2024.100210

Wafid, A. N., M., Suyono, T. W. B., Saputra, S. E. A., Cita, A., Iman, M. I., Supartoyo, Tanjung, M. R. A., Gustiantini, L., Maliki, F., Rahdiana, R. N., Hermawan, W., Solu, W. P., Cipta, A., Natali, M. C., Priambodo, I. C., Widyaningrum, R., Omang, A., Rahardjo, P., Wahyudiono, J., Yudhicara, Suherman, I. H., Solikhin, A., Setiawan, T., Husna, A., Nurfalah, F., Exmarwanto, Mandi, I., Nurmaliah, & Rohman. (2025). Likuefaksi Tipe Palu: Fenomena Alam Unik di Dunia, Suatu Tinjauan Geologi Komprehensif. Kementerian Energi dan Sumber Daya Mineral, Badan Geologi. Bandung.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Fakhri Reza, Adi Subiyanto, Sutanto Sutanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.