Development of HOTS-Based Questions as an Implementation of the Deep Learning Approach in the Merdeka Curriculum

(1) Neng Nurhemah Mail (Universitas Pamulang, Indonesia)
(2) Yatti Rosmiati Mail (Universitas Pamulang, Indonesia)
(3) * Mas Fierna Janvierna Lusie Putri Mail (Universitas Pamulang, Indonesia)
*corresponding author

Abstract


The Merdeka Curriculum is designed to develop students who are adaptive, creative, critical, and reflective in facing 21st-century challenges. However, many teachers still experience difficulties in designing assessment instruments based on Higher Order Thinking Skills (HOTS), causing learning activities to focus predominantly on Lower Order Thinking Skills (LOTS). To address this issue, a community service program was implemented to enhance teachers’ understanding of HOTS and deep learning concepts, strengthen their skills in developing HOTS-based assessment questions aligned with Merdeka Curriculum learning outcomes, and encourage their integration into instructional planning. The program was conducted through socialization, counseling, interactive workshops, mentoring, and reflective evaluation, involving teachers from SMK IPTEK, South Tangerang City. The results demonstrated a significant improvement in teachers’ comprehension of HOTS and their ability to design assessment items targeting analytical, evaluative, and creative thinking skills (C4–C6). Teachers also successfully integrated digital tools such as Google Forms and Quizizz for interactive assessments. Overall, the program positively impacted learning quality and supported the realization of the Pancasila Student Profile.


Keywords


HOTS Questions, Deep Learning, Merdeka Curriculum, Teachers, Meaningful Learning

   

DOI

https://doi.org/10.57235/aurelia.v5i1.7805
      

Article metrics

10.57235/aurelia.v5i1.7805 Abstract views : 0 | PDF views : 0

   

Cite

   

Full Text

Download

References


Anderson, L. W., & Krathwohl, D. R. (2001). A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. New York: Longman.

Ausubel, D. P. (2021). The Acquisition and Retention of Knowledge: A Cognitive View. Springer.

Badan Standar, Kurikulum, dan Asesmen Pendidikan. (2022). Keputusan Kepala Badan Standar, Kurikulum, dan Asesmen Pendidikan Nomor 033/H/KR/2022 tentang Capaian Pembelajaran pada Pendidikan Anak Usia Dini, Jenjang Pendidikan Dasar, dan Jenjang Pendidikan Menengah. Jakarta: Kemendikbudristek.

Fullan, M. (2019). Deep Learning: Engage the World Change the World. Corwin Press.

Fullan, M., Quinn, J., & McEachen, J. (2017). Deep Learning: Engage the World Change the World. Corwin Press.

Fauziati, E. (2025). Deep Learning: a Theoretical Review / Pembelajaran Mendalam: Tinjauan Teoretis. Suar Betang, 20(1), 123–133. https://doi.org/10.26499/surbet.v20i1.30777

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Cambridge, MA: MIT Press.

Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi. (2022a). Peraturan Menteri Pendidikan, Kebudayaan, Riset, dan Teknologi Nomor 5, 7, 16, dan 21 Tahun 2022 tentang Standar Nasional Pendidikan. Jakarta: Kemendikbudristek.

Langer, E. J. (2023). The Power of Mindful Learning. Hachette Books.

Pemerintah Republik Indonesia. (2022). Peraturan Pemerintah Nomor 4 Tahun 2022 tentang Perubahan atas Peraturan Pemerintah Nomor 57 Tahun 2021 tentang Standar Nasional Pendidikan. Lembaran Negara Republik Indonesia Tahun 2022 Nomor 10.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.

Undang-Undang Republik Indonesia Nomor 20 Tahun 2003 tentang Sistem Pendidikan Nasional. Lembaran Negara Republik Indonesia Tahun 2003 Nomor 78. Jakarta: Sekretariat Negara.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Neng Nurhemah, Yatti Rosmiati, Mas Fierna Janvierna Lusie Putri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.